३८८ सिद्धान्तशिरोमणी गोलाध्याये तुङ्गोर्ध्वरेखा खलु यत्र लग्ना तत्रोच्चमस्मिन् प्रतिमण्डलेऽपि । ततो विलोमं खलु तुङ्गभागैर्मेषादिरस्मात् खचरोऽनुलोमम् ।। १३ । देयस्तदुच्चान्तरमत्र केन्द्रं दोज्यच्चरेखाखगयोश्च मध्ये । तिर्थक्स्थरेखाखगयोस्तु कोटि: सोर्ध्वाधरा बाहुगुणस्तु तिर्यक् ॥ १४ ॥ वा० भा० – भित्तेरुत्तरपाइवें बिन्दु कृत्वा तस्मादिबन्दोस्त्रिज्यामितेन कर्कटेन वृत्तं विलिखेत् । तत् कक्षावृत्तम् । यस्य ग्रहस्य छेद्यकं विलिख्यते तस्य मध्यमभुतिः पञ्चदशांशेन तस्मिन्नेव बिन्दौ यद्वृत्तं क्रियते सा भूः | लम्बनावनतिदर्शनार्थमियं भूः | अन्यथा बिन्दुरेव भूः कल्प्यते । तत् कक्षावृत्तं चक्रांशेरयम् । तत्रेष्टस्थाने मेषादि प्रकल्प्य तस्मान्मध्यमग्र हमुच्चं च दत्त्वा तदप्रयोश्चिह्न कार्ये । भूम्युच्चयोरुपरि गता रेखा कार्या । सोच्चरेखा । अथ भूमध्य उच्च रेखाजनितमत्स्येन तियँग्रेखान्या कार्या । अथ ग्रहस्यान्त्य फल ज्यामितं सूत्रं भूमध्यादुच्चरेखायां दत्त्वा तदग्रचिह्नात् त्रिज्यामितेनैव कर्कटकेन यद्वृत्तं विलिख्यते तत् प्रतिमण्डलम् । तत्रापि संवोच्चरेखा । किंतु तन्मध्येऽन्या तिर्यग्रेखा कार्या। प्रतिमण्डलमपि चक्रांशरद्र्यम् । अथोच्च- रेखोपरि नीयमाना यत्र लगति तत्र प्रतिमण्डलेऽप्युच्चं कल्प्यम् । तस्मादुच्चराशिभागान् विलोमतो गणयित्वा तदने मेषादिः कल्प्य: । ततो ग्रहोऽनुलोमं देयः । तत्र ग्रहोच्चयोरन्तरं केन्द्रम् । उच्चरेखायास्तियंग्ग्ग्रहगामिनी रेखा सा दोर्ज्या। प्रतिमण्डलमध्ये या तिथंग्रेखा तद्ग्रह- योरन्तरं कोटिज्या | सा किलोवरूपा भवति ॥ १०-१४ । वा० वा०——त्रिभज्यकासम्मितकर्कटेनेति भङ्गीद्वयं स्पष्टमुक्तम् । भूगर्भक्षिति- जादू भूपृष्ठस्थक्षितिजं भूव्यासार्द्धयोजनैरुच्छ्रितमिति मध्यमखेटभुक्तितिथ्यंशमानेन महीं सुवृत्तामित्युक्तम् । गतियोजनैर्गंतिकलास्तदा भूव्यासार्द्धयोजनैः किमिति गति- तिथ्यंशः सिध्यति । १०-१४ । इदानीं फलानयन इतिकर्तव्यतोपपत्तिमाह- मध्यस्थरेखे किल वृत्तयोर्ये तदन्तरालेऽन्त्यफलस्य जीवा । तदूर्ध्वतः कोटिगुणो मृगादौ कर्यादिकेन्द्रे तदधो यतः स्यात् ।। १५ । अतस्तदैक्यान्तरमत्र कोटिर्दोर्ज्या भुजस्तस्कृतियोगमूलम्' । कर्णः कुमध्यप्रतिमण्डलस्थखेटान्तरे स्पष्टखगो हि दृश्यः ।। १६ । कक्षाख्यवृत्ते श्रुतिसूत्रसक्ते फलं च मध्यस्फुटखेटमध्ये । मध्येऽग्रगे स्पष्टखगादृणं तत्पृष्ठस्थिते स्वं क्रियते ततश्च ।। १७ । १. अत्र श्रीपतिः- ग्रहपरफलमौर्व्या दत्तयोर्ध्वं कुमध्यात् प्रतिवलयमिदं स्याद्व्यासखण्डेन वृत्तम् । भवति हि निजकक्षामण्डलाग्रे यदन्यत् परफलगुणवृत्तं स्वोच्चनीचाख्यमेतत् ॥ सि० शे० १६ अ० २ श्लो० ।
पृष्ठम्:Siddhānta Śiromaṇi, Sanskrit.djvu/४३०
दिखावट