पृष्ठम्:ब्राह्मस्फुटसिद्धान्तः (भागः ४).djvu/१७८

विकिस्रोतः तः
Jump to navigation Jump to search
एतत् पृष्ठम् अपरिष्कृतम् अस्ति


उदाहरणानि १२६९ ज्ये (ज्ये–३)_४ (४-) =२ (१६-३)=२४१३=२६ । आभ्यां भावनया कनिष्ठ ज्येष्ठयोरनन्तत्वं विधेयम् । अतोऽवमशेषप्रमाणम् =५=य । द्वितीय प्रश्ने १२ य'—३ अयं वर्गः स्यात् । अत्र प्रकृतिः=१२, क्षेपः==-३ तदेष्ट ट्रस्वमित्यादिना क==१, ज्ये=३, क्ष =-३, रूपक्षपीय कनिष्ठज्येष्ठाभ्यां कनिष्ठज्येष्ठयोरत्राप्यनन्तत्वं विधेयम् । अतोऽवमशेषमानम्=१ ।। ८२ ॥ अब अन्य दो प्रश्नों को कहते हैं। हि- भा.-अवमशेष वर्गों को बारह से गुणा कर एक सौ जोड़ने से वर्ग होता है, वा अवम शेषवगं को बारह से गुणा कर तीन घटाने से वर्ग होता है इनका उत्तर करते हुए व्यक्ति गणक है इति ॥ ८२ ॥ कल्पना करते हैं अबमशेष प्रमाण=य, तब प्रथम प्रश्न के आलापानुसार १२ य'+१०० यह वर्ग है । यहाँ प्रकृति = १२, क्षेप=१०० तब ‘इष्टं हस्वं तस्य वर्ग:’ इत्यादि भास्करोक्त सूत्र से चारक्षेप में क=१, ज्ये=४, २=४, यहाँ इष्ट=५ कल्पना कर ‘सृष्णः कृष्णे तदा पदेइस भास्करोक्ति से क८५, ज्ये=२०, ३=१००, चारक्षेप सम्बन्धी कनिष्ठ और ज्येष्ठ से ‘चतुरधिकेऽन्यपदकृतिः' इत्यादि आचार्योक्त ६७ सूत्र से रूपक्षेप में कनिष्ठ= क (ज्ये११_१x (४-१) १६-११५ ज्ये = ज्येष्ठ — ज्ये (ज्ये'–३)_४ (४९-३) =२ (१६-३)=२४१३= २६ । इन कनिष्ठ और ज्येष्ठ से भावना के द्वारा कनिष्ठ और ज्येष्ठ अनन्त होता है, अतअवमशेषमान= ५= य, हुआ । द्वितीय प्रश्न में १२ य'—३ यह वर्ग है । यहां प्रकृति =१२, क्षेप=--३, 'इष्टं ह्रस्वं तस्य वर्गःइत्यादि से क८१, ज्ये= ३, क्षेः =-३, रूपक्षेपीय कनिष्ठ और ज्येष्ठ से भावना से यहाँ भी कनिष्ठ और ज्येष्ठ की अनन्तता होती है । अत: अवमशेष = १, हुआ इति ।। ८२ ॥ इदानीमन्यं प्रश्नमाह। खदिनेऽर्ककलाशेषं गुरुबिनविकलावशोषयुक्तनम् वर्गे वधं च संकं कुर्वन्नावत्सराद् गणकः ।।८३। सु. भा-बुधदिनेऽर्कस्य यल् कलाशेषं तदुगुरुदिनजेनार्कस्य विकलावशेषेण युक्तसूनं च वगै तथा तयोः कलाविकलाशेषयोर्वधं सैकं च वर्गमावत्सरान् कुर्वन्नपि स गणकोऽस्तीति ।