सामग्री पर जाएँ

पृष्ठम्:लघुभास्करीयम्.djvu/१७८

विकिस्रोतः तः
एतत् पृष्ठम् अपरिष्कृतम् अस्ति

THEORY OF THE PULVERISER 105 dividend and divisor in solving a pulveriser. In the contrary case, (it should be understood that the given interpolator corres ponds to the abraded values of the dividend and divisor, and so) one should proced with their abraded values. Let ). be the greatest common multiple of 0 and b; and let 2= ).4 and b=).B. If ८= XC, then according to the above rule, we have to solve the (0) .B 2-4. 4* + C If८ is not divisible by ), then we should solve the pulveriser 4x + ८ 105 n general, a pulveriser is said to be wrong when the interpolator is not divisible by the greatest common multiple of the dividend and the divisor But in the present case, as will be seen from the following rule, the author while enunciating the above rule has in his mind a particular astronomical problem in which the dividend denotes the number of revolutions of a planet, the divisor the number of civil days, and the interpolator the residue of the revolution of the planet. And in such an astronomical problem, the residue of the revolution depends upon whether it has been obtained by धsing the actual values of the revolution-number and the civil days or by using their abraded values. Hence the justification of the above rule. It is presumed that the given problem is in no case incorrect. The method of solving a pulveriser: भाज्यं निधाय तदधो हारं च पुनः परस्परं छिन्द्यात् लब्धमधोऽधः प्रथमावाप्तस्याधस्ततोऽप्यन्यत् ।। ५ ।। विभजेदेवं यावद् भाजकभाज्यावशून्यरूपौ स्तः । मतिकल्पना च विधिना समे पदे व्यत्ययाद्विषमे ।। ६ ।। भाज्याद्भाज्याहृतगतशेषोनाद् भाजकाभिहतदेहात् । गतसहिताद् भाज्याप्तं गतस्य हानौ मतिर्भवति । ७ ।। रूपानहारगुणताद्गन्तव्याप्तस्य भाज्यलब्धस्य । हारहृतस्य च शेषं योगे हारो मतिरशेषे ।। ८ ।। मतिहतभाज्याच्छोध्यं गतमगतं योजयेत्ततो विभजेत् । हारेण मतिं वल्ल्याऽधोऽधो निधायाप्तमप्यस्याम ।। ९ ।।